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Sets and Functions: Sets

1 A set is an unordered collection of objects. The objects in
a set are called elements.

2 The cardinality of a set is the number of elements it con-
tains. The empty set ∅ is the set with no elements.

3 If every element of A is also an element of B, then we say
A is a subset of B and write A ⊂ B. If A ⊂ B and B ⊂ A,
then we say that A = B.

4 Set operations:

(i) An element is in the union A ∪ B of two sets A and B if
it is in A or B.

(ii) An element is in the intersection A ∩ B of two sets A
and B if it is in A and B.

(iii) An element is in the set difference A \ B if it is in A but
not B.

(iv) Given a set Ω and a set A ⊂ Ω, the complement of A
with respect to Ω is Ac = Ω \ A.

A ∪ B

A B

A ∩ B

A B

A\B

A B

A
c

A B

5 Two sets A and B are disjoint if A ∩ B = ∅ (in other
words, if they have no elements in common).

6 A partition of a set is a collection of nonempty disjoint
subsets whose union is the whole set.

7 The Cartesian product of A and B is

A × B = {(a, b) : a ∈ A and b ∈ B}.

8 (De Morgan’s laws) If A, B ⊂ Ω, then

(i) (A ∩ B)c = Ac ∪ Bc , and
(ii) (A ∪ B)c = Ac ∩ Bc .

9 A list is an ordered collection of finitely many objects.
Lists differ from sets in that (i) order matters, (ii) repetition
matters, and (iii) the cardinality is restricted.

Sets and Functions: Functions

1 If A and B are sets, then a function f : A → B is an
assignment of some element of B to each element of A.

2 The set A is called the domain of f and B is called the
codomain of f .

3 Given a subset A′ of A, we define the image of
f —denoted f (A′)—to be the set of elements which are
mapped to from some element in A′ .

4 The range of f is the image of the domain of f .

5 The composition of two functions f : A → B and
g : B → C is the function g ◦ f which maps a ∈ A to
g( f (a)) ∈ C.

6 The identity function on a set A is the function f : A →
A which maps each element to itself.

7 A function f is injective if no two elements in the domain
map to the same element in the codomain.

8 A function f is surjective if the range of f is equal to the
codomain of f .

9 A function f is bijective if it is both injective and surjec-
tive. If f is bijective, then the function from B to A that maps
b ∈ B to the element a ∈ A that satisfies f (a) = b is called
the inverse of f .

10 If f : A → B is bijective, then the function f−1 ◦ f is
equal to the identity function on A, and f ◦ f−1 is the iden-
tity function on B.

Programming in Julia

1 A value is a fundamental entity that may be manipulated
by a program. Values have types; for example, 5 is an Int and
"Hello world!" is a String.

2 A variable is a name used to refer to a value. We can
assign a value 5 to a variable x using x = 5.

3 A function performs a particular task. You prompt a
function to perform its task by calling it. Values supplied to a
function are called arguments. For example, in the function
call print(1,2), 1 and 2 are arguments.

4 An operator is a function that can be called in a special
way. For example, * is an operator since we can call the mul-
tiplication function with the syntax 3 * 5.

5 A statement is an instruction to be executed (like x = -3).
An expression is a combination of values, variables, opera-
tors, and function calls that a language interprets and eval-
uates to a value.

6 A numerical value can be either an integer or a float. The
basic operations are +,-,*,/,^, and expressions are evalu-
ated according to the order of operations.

7 Numbers can be compared using <,>,==,≤ or ≥.

8 Textual data is represented using strings. length(s) re-
turns the number of characters in s. The * operator concate-
nates strings.

9 A boolean is a value which is either true or false.
Booleans can be combined with the operators && (and), ||
(or), ! (not).

10 Code blocks can be executed conditionally:
if x > 0

"x is positive"
elseif x == 0

"x is zero"
else

"x is negative"
end

11 Functions may be defined using the familiar math no-
tation: f(x,y) = 3x + 2y or using a function block (shift is
a keyword argument):

function f(x,y; shift=0)
3x + 2y + shift

end

12 The scope of a variable is the region in the program
where it is accessible. Variables defined in the body of a func-
tion are not accessible outside the body of the function.

13 Array is a compound data type for storing lists of objects.
Entries of an array may be accessed with square bracket syn-
tax using an index or using a range object a:b.

A = [-5,3,2,1]
A[2]
A[3:end]

14 An array comprehension can be used to generate new
arrays: [k^2 for k=1:10 if mod(k,2) == 0]

15 A dictionary encodes a discrete function by storing
input-output pairs and looking up input values when in-
dexed. This expression returns [0,0,1.0]:

Dict("blue"=>[0,0,1.0],"red"=>[1.0,0,0])["blue"]

16 A while loop takes a conditional expression and a body
and evaluates them alternatingly until the conditional ex-
pression returns false. A for loop evaluates its body once
for each entry in a given iterator (for example, a range, array,
or dictionary). Each value in the iterator is assigned to a loop
variable which can be referenced in the body of the loop.
while x > 0

x -= 1
end

for i=1:10
print(i)

end

Linear Algebra: Vector Spaces

1 A vector inRn is a column of n real numbers, also written
as [v1 , . . . , vn ]. A vector may be depicted as an arrow from
the origin in n-dimensional space. The norm of a vector v is
the length

√
v2

1 + · · ·+ v2
n of its arrow.

2 The fundamental vector space operations are vector ad-
dition and scalar multiplication.

3 A linear combination of a list of vectors v1 , . . . , vk is an
expression of the form

c1v1 + c2v2 + · · ·+ ckvk ,

where c1 , . . . , ck are real numbers. The c’s are called the
weights of the linear combination.

4 The span of a list L of vectors is the set of all vectors which
can be written as a linear combination of the vectors in L.

5 A list of vectors is linearly independent if and only if the
only linear combination which yields the zero vector is the
one with all weights zero.

6 A vector space is a nonempty set of vectors which is
closed under the vector space operations.

7 A list of vectors in a vector space is a spanning list of that
vector space if every vector in the vector space can be written
as a linear combination of the vectors in that list.

8 A linearly independent spanning list of a vector space is
called a basis of that vector space. The number of vectors in
a basis of a vector space is called the dimension of the space.

9 A linear transformation L is a function from a vector
space V to a vector space W which satisfies L(cv + βw) =
cL(v) + L(w) for all c ∈ R, u, v ∈ V. These are “flat maps”:
equally spaced lines are mapped to equally spaces lines or
points. Examples: scaling, rotation, projection, reflection.

10 Given two vector spaces V and W, a basis {v1 , . . . , vn}
of V, and a list {w1 , . . . , wn} of vectors in W, there exists one
and only one linear transformation which maps v1 to w1 , v2
to w2 , and so on.

11 The rank of a linear transformation from one vector
space to another is the dimension of its range.

12 The null space of a linear transformation is the set of
vectors which are mapped to the zero vector by the linear
transformation.

13 The rank of a transformation plus the dimension of its
null space is equal to the dimension of its domain (the rank-
nullity theorem).

Linear Algebra: Matrix Algebra

1 The matrix-vector product Ax is the linear combination
of the columns of A with weights given by the entries of x.

2 Linear transformations from Rn to Rm are in one-to-one
correspondence with m × n matrices.

3 The identity transformation corresponds to the identity
matrix, which has entries of 1 along the diagonal and zero
entries elsewhere.

4 Matrix multiplication corresponds to composition of
the corresponding linear transformations: AB is the matrix
for which (AB)(x) = A(Bx) for all x.

5 A m × n matrix is full rank if its rank is equal to

min(m, n)

6 Ax = b has a solution x if and only if b is in the span of
the columns of A. If Ax = b does have a solution, then the
solution is unique if and only if the columns of A are linearly
independent. If Ax = b does not have a solution, then there
is a unique vector x which minimizes |Ax − b|2 .

7 If the columns of a square matrix A are linearly indepen-
dent, then it has a unique inverse matrix A−1 with the prop-
erty that Ax = b implies x = A−1b for all x and b.

8 Matrix inversion satisfies (AB)−1 = B−1 A−1 if A and B
are both invertible.

9 The transpose A′ of a matrix A is defined so that the rows
of A′ are the columns of A (and vice versa).

10 The transpose is a linear operator: (cA+ B)′ = cA′ + B′

if c is a constant and A and B are matrices.

11 The transpose distributes across matrix multiplication
but with an order reversal: (AB)′ = B′A′ if A and B are
matrices for which AB is defined.

12 A matrix A is symmetric if A = A′ .

13 A linear transformation T from Rn to Rn scales all n-
dimensional volumes by the same factor: the (absolute value
of the) determinant of T.

14 The sign of the determinant tells us whether T reverses
orientations.

15 det AB = det A det B and det A−1 = (det A)−1 .

16 A square matrix is invertible if and only if its determi-
nant is nonzero.

Linear Algebra: Orthogonality

1 The dot product of two vectors in Rn is defined by

x · y = x1y1 + x2y2 + · · ·+ xnyn .

2 x · y = ‖x‖‖y‖ cos θ, where x, y ∈ Rn and θ is the angle
between the vectors.

3 x · y = 0 if and only if x and y are orthogonal.

4 The dot product is linear: x · (cy + z) = cx · y + x · z.

5 The orthogonal complement of a subspace V ⊂ Rn is
the set of vectors which are orthogonal to every vector in V.

6 The orthogonal complement of the span of the columns
of a matrix A is equal to the null space of A′ .

7 rank A = rank A′A for any matrix A.

8 A list of vectors satisfying vi · vj = 0 for i 6= j is orthog-
onal. An orthogonal list of unit vectors is orthonormal.

9 Every orthogonal list is linearly independent

10 A matrix U has orthonormal columns if and only if
U′U = I. A square matrix with orthonormal columns is
called orthogonal. An orthogonal matrix and its transpose
are inverses.

11 Orthogonal matrices represent rigid transformations
(ones which preserve lengths and angles).

12 If U has orthonormal columns, then UU′ is the matrix
which represents projection onto the span of the columns of
U.

Linear Algebra: Spectral Analysis

1 An eigenvector v of an n × n matrix A is a nonzero vec-
tor with the property that Av = λv for some λ ∈ R. We call
λ an eigenvalue.

If v is an eigenvector of A, then A maps the line span({v})
to itself:
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[

2 1

0 3

]

2 Eigenvectors of A with distinct eigenvalues are linearly
independent.

3 Not every n × n matrix A has n linearly independent
eigenvectors. If A does have n linearly independent eigen-
vectors, we can make a matrix V with these eigenvectors
v1 , . . . , vn as columns and get

AV = VΛ =⇒ A = VΛV−1 (diagonalization of A)

where Λ is a diagonal matrix of eigenvalues. The action of A
is to scale components in the basis {v1 , . . . , vn}:

A(c1v1 + · · ·+ cnvn) = c1λ1v1 + · · ·+ cnλnvn

4 Diagonalization allows us to apply functions to matrices
by applying them to the eigenvalues: if A = VΛV−1 , then
An = VΛnV−1 , and

√
A = V

√
ΛV−1 .

5 Spectral Theorem: if A is an n × n symmetric matrix,
then A is orthogonally diagonalizable: there is an orthogo-
nal matrix V with columns v1 , . . . , vk such that

A = VΛV′ = λ1v1v′1 + · · ·+ λnvnv′n ,

Note that vkv′k projects onto the span of {vk}.

6 A symmetric matrix is positive semidefinite if its eigen-
values are all nonnegative.

Linear Algebra: SVD

1 The Gram matrix A′A of any m × n matrix A is positive
semidefinite. Furthermore, |

√
A′Ax| = |Ax| for all x ∈ Rn .

2 The singular value decomposition is the factorization of
any rectangular m× n matrix A as UΣV′ , where U and V are
orthogonal and Σ is an m× n diagonal matrix (with diagonal
entries in decreasing order).

V′
= −73.2

◦
turn

Σ =

[

2.303 0

0 1.303

]

U= 16.8
◦

turn

A =

[

1 2

−1 1

]

3 The diagonal entries of Σ are the singular values of A,
and the columns of U and V are called left singular vectors
and right singular vectors, respectively. A maps each right
singular vector vi to the corresponding left singular vector
ui scaled by σi .

4 The vectors in Rn stretched the most by A are the ones
which run in the direction of the column or columns of V
corresponding to the greatest singular value. Same for least.

5 For k ≥ 1, the k-dimensional vector space with minimal
sum of squared distances to the columns of A (interpreted
as points in Rm) is the span of the first k columns of U.

6 The absolute value of the determinant of a square matrix
is equal to the product of its singular values.

Multivariable calculus

1 A sequence of real numbers (xn)∞
n=1 = x1 , x2 , . . . con-

verges to a number x ∈ R if the distance from xn to x on the
number line can be made as small as desired by choosing n
sufficiently large. We say limn→∞ xn = x or xn → x.

2 (Squeeze theorem) If an ≤ bn ≤ cn for all n ≥ 1 and if
limn→∞ an = limn→∞ cn = b, then bn → b as n → ∞.

3 (Comparison test) If ∑∞
n=1 bn converges and if |an | ≤ bn

for all n, then ∑∞
n=1 an converges.

Conversely, if ∑∞
n=1 bn does not converge and 0 ≤ bn < an ,

then Σ∞
n=1an also does not converge.

4 The series ∑∞
n=1 np converges if and only if p < −1. The

series ∑∞
n=1 an converges if and only if −1 < a < 1.

5 The Taylor series, centered at c, of an infinitely differen-
tiable function f is defined to be

f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 +

f ′′′(c)
3!

(x − c)3 + · · ·

6 We can multiply or add Taylor series term-by-term, we
can integrate or differentiate a Taylor series term-by-term,
we can substitute one Taylor series into another to obtain a
Taylor series for the composition.

7 The partial derivative ∂ f
∂x (x0 , y0) of a function f (x, y) at

a point (x0 , y0) is the slope of the graph of f in the x-direction
at the point (x0 , y0).

8 Given f : Rn → Rm , we define ∂f/∂x to be the matrix
whose (i, j)th entry is ∂ fi/∂xj . Then

(i)
∂

∂x
(Ax) = A (ii)

∂

∂x
(x′A) = A′

(iii)
∂

∂x
(u′v) = u′ ∂v

∂x
+ v′

∂u
∂x

.

9 A function of two variables is differentiable at a point if
its graph looks like a plane when you zoom in sufficiently
around the point. More generally, a function f : Rn → Rm is
differentiable at x if it is well-approximated by its derivative
near x:

lim
∆x→0

f(x + ∆x)−
(

f(x) + ∂f
∂x (x)∆x

)
|∆x| = 0.

10 The Hessian H of f : Rn → R is the matrix
of its second order derivatives: Hi,j(x) = ∂

∂xi
∂

∂xj
f (x).

The quadratic approximation of f at the origin is f (0) +
∂ f
∂x (0)x + 1

2 x′H(0)x.

11 Suppose that f is a continuous function defined on a
closed and bounded subset D of Rn . Then:

(i) f realizes an absolute maximum and absolute minimum
on D (the extreme value theorem).

(ii) Any point where f realizes an extremum is either a
critical point—meaning that ∇ f = 0 or f is non-
differentiable at that point—or at a point on the bound-
ary.

(iii) (Lagrange multipliers) If f realizes an extremum at a
point on a portion of the boundary which is the level set
of a differentiable function g with non-vanishing gradi-
ent ∇g, then either f is non-differentiable at that point
or the equation

∇ f = λ∇g

is satisfied at that point, for some λ ∈ R.

12 If r : R1 → R2 and f : R2 → R1 , then

d
dt

( f ◦ r) =
∂ f
∂r

(r(t))
dr
dt

(t). (chain rule)

13 Integrating a function is a way of totaling up its values.∫∫
D f (x, y)dx dy can be interpreted as the mass of an object

occupying the region D and having mass density f (x, y) at
each point (x, y).

14 Double integration over D: the bounds for the outer in-
tegral are the smallest and largest values of y for any point
in D, and the bounds for the inner integral are the smallest
and largest values of x for any point in a given “y = constant”
slice of the region.

15 Polar integration over D: the outer integral bounds are
the least and greatest values of θ for a point in D, and the
inner integral bounds are the least and greatest values of r
for any point in D along each given “θ = constant” ray. The
area element is dA = r dr dθ.

Numerical Computation: machine arithmetic

1 Computers store numerical values as sequences of bits.
The type of a numeric value specifies how to interpret the
underlying sequence of bits as a number.

2 The Int64 type uses 64 bits to represent the integers from
−263 to 263 − 1. For 0 ≤ n ≤ 263 − 1, we represent n using its
binary representation, and for 1 ≤ n ≤ 263 , we represent −n
using the binary representation of 264 − n. Int64 arithmetic
is performed modulo 264 .

3 The Float64 type uses 64 bits to represent real numbers.
We call the first bit σ, the next 11 bits (interpreted as a binary
integer) e ∈ [0, 2047], and the final 52 bits f ∈ [0, 252 − 1]. If
e /∈ {0, 2047}, then the number represented by (σ, e, f ) is

x = (−1)σ2e−1023

(
1 + f

(
1
2

)52
)

.

The representable numbers between consecutive powers of
2 are the ones obtained by 52 recursive iterations of binary
subdivision. The value of e indicates the powers of 2 that
x is between, and the value of f indicates the position of x
between those powers of 2.

The Float64 exponent value e = 2047 is reserved for Inf and
NaN, while e = 0 is reserved for the subnormal numbers:
(σ, 0, f ) represents (−1)σ f /21074 .

252 values

(

1
2

)1022

252 values

(

1
2

)1021

252 values

(

1
2

)1020

252 values

(

1
2

)10190 21024

representable value
largest finite

4 The BigInt and BigFloat are types use an arbitrary num-
ber of bits and can handle very large numbers or very high
precision. Computations are much slower than for 64-bit
types (like 10 ms for sum(1:10^6) versus 0.5 ms).

Numerical Computation: Error

1 If Â is an approximation for A, then the relative error is
Â−A

A

2 Roundoff error comes from rounding numbers to fit
them into a floating point representation.

3 Truncation error comes from using approximate math-
ematical formulas or algorithms.

4 Statistical error arises from using randomness in an ap-
proximation.

5 The condition number of a function measures how it
stretches or compresses relative error. The condition num-
ber of a problem is the condition number of the map from
the problem’s initial data a to its solution S(a):

κ(a) =
|a|| d

da S(a)|
|S(a)| .

6 A problem is well-conditioned if its condition number is
modest and ill-conditioned if the condition number is large.

7 The condition number of a 7→ an is κ(a) = n. The con-
dition number of a 7→ a − b is a

a−b , so subtracting b is ill-
conditioned near b (catastrophic cancellation).

8 The relative roundoff error between a non-extreme real
number and the nearest T-representable value is no more
than the machine epsilon of the floating point type T.

9 An algorithm which solves a problem with error much
greater than κεmach is unstable. An algorithm is unstable if
at least one of the steps it performs is ill-conditioned. If every
step of an algorithm is well-conditioned, then the algorithm
is stable.

10 The condition number of an matrix A is defined to be
the maximum condition number of the function x 7→ Ax
over its domain: κ(A) = σmax/σmin .

Numerical Computation: PRNGs

1 A pseudorandom number generator (PRNG) is an al-
gorithm for generating a deterministic sequence of numbers
which is intended to share properties with a sequence of ran-
dom numbers. The PRNG’s initial value is called its seed.

2 The linear congruential generator: fix positive integers
M, a, and c, and consider a seed X0 ∈ {0, 1, . . . , M −
1}. We return the sequence X0 , X1 , X2 , . . ., where Xn =
mod(aXn−1 + c, M) for n ≥ 1.

3 The period of a PRNG is the minimum length of a repeat-
ing block. A long period is a desirable property of a PRNG,
and a very short period is typically unacceptable.

4 Frequency tests check whether blocks of terms appear
with the appropriate frequency (for example, we can check
whether a2n > a2n−1 for roughly half of the values of n).

Numerical Computation: Automatic Differentiation

1 A dual number stores the numerical values of the first
two terms of a function’s Taylor series. Differentiation by
substituting dual numbers (autodiff, or AD) provides sped
and machine-precision accuracy.

2 To find the derivative of f with AD, every function or op-
eration used by f must be dual-number-aware:

struct DualNumber
v # value
d # derivative

end
*(x::DualNumber, y::DualNumber) = # product rule

DualNumber(x.v * y.v, x.v * y.d + x.d * y.v)
sin(x::DualNumber) = # chain rule for sine

DualNumber(sin(x.v), cos(x.v) * x.d)

3 Use packages: ForwardDiff for Julia; autograd for Python.

Numerical Computation: Optimization

1 Gradient descent seeks to minimize f : Rn → R by re-
peatedly stepping in f ’s direction of maximum decrease. We
begin with a value x0 ∈ Rn and repeatedly update using
the rule xn+1 = xn − ε∇ f (xn), where ε is the learning rate.
Large ε can lead to divergence; small ε to slow convergence.
We fix a small number τ > 0 and stop when |∇ f (xn)| < τ.

2 A set is convex if it contains every line segment connect-
ing any two points in the set. A function defined on a convex
subset of Rn is convex if every line segment connecting two
points on its graph lies on or above the graph (which is im-
plied by an everywhere positive semidefinite Hessian). Con-
vex function have desirable optimization properties: any lo-
cal minimum of a convex function is also a global minimum.

3 Algorithms similar to gradient descent but with usually
faster convergence: conjugate gradient, BFGS, L-BFGS.
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Probability: Counting

1 Fundamental principle of counting: If one experiment
has m possible outcomes, and if a second experiment has n
possible outcomes for each of the outcomes in the first ex-
periment, then there are mn possible outcomes for the pair
of experiments.

2 The number of ways to arrange n objects in order is
n! = 1 · 2 · 3 · · · · · n (read n factorial).

3 Permutations: if S is a set with n elements, then there
are n!

(n−r)! ordered r-tuples of distinct elements of S.

4 Combinations: The number of r-element subsets of an
n-element set is (n

r) =
n!

r!(n−r)! .

Probability: Probability Spaces

1 Given a random experiment, the set of possible outcomes
is called the sample space Ω, like {(H, H), (H, T), (T, H), (T, T)}.

2 We associate with each outcome ω ∈ Ω a probability
mass, denoted m(ω). For example, m((H, T)) = 1

4 .

3 In a random experiment, an event is a predicate that can
be determined based on the outcome of the experiment (like
“first flip turned up heads”). Mathematically, an event is a
subset of Ω (like {(H, H), (H, T)}).

4 Basic set operations ∪, ∩, and c correspond to disjunc-
tion, conjunction, and negation of events:

(i) The event that E happens or F happens is E ∪ F.
(ii) The event that E happens and F happens is E ∩ F.

(iii) The event that E does not happen is Ec .

5 If E and F cannot both occur (that is, E ∩ F = ∅), we say
that E and F are mutually exclusive or disjoint.

6 If E’s occurrence implies F’s occurrence, then E ⊂ F.

7 The probabilityP(E) of an event E is the sum of the prob-
ability masses of the outcomes in that event. The domain of
P is 2Ω , the set of all subsets of Ω.

8 The pair (Ω,P) is called a probability space. The funda-
mental probability space properties are

(i) P(Ω) = 1 — “something has to happen”
(ii) P(E) ≥ 0 — “probabilities are non-negative”

(iii) P(E ∪ F) = P(E) + P(F) if E and F are mutually exclu-
sive — “probability is additive”.

9 Other properties which follow from the fundamental
ones:

(i) P(∅) = 0

(ii) P(Ec) = 1 − P(E)

(iii) E ⊂ F =⇒ P(E) ≤ P(F) (monotonicity)
(iv) P(E ∪ F) = P(E) + P(F) − P(E ∩ F) (principle of

inclusion-exclusion).

Probability: Random Variables

1 A random variable is a number which depends on the
result of a random experiment (one’s lottery winnings, for
example). Mathematically, a random variable is a function
X from the sample space Ω to R.

2 The distribution of a random variable X is the probabil-
ity measure on R which maps each set A ⊂ R to P(X ∈ A).
The probability mass function of the distribution of X may
be obtained by pushing forward the probability mass from
each ω ∈ Ω:

3 The cumulative distribution function (CDF) of a ran-
dom variable X is the function FX (x) = P(X ≤ x).

mX(x)
1

−2 −1 1 2

FX(x)
1

−2 −1 1 2

4 The joint distribution of two random variables X and
Y is the probability measure on R2 which maps A ⊂ R2 to
P((X, Y) ∈ A). The probability mass function of the joint
distribution is m(X,Y)(x, y) = P(X = x and Y = y).

Probability: Conditional Probability

1 Given a probability spaceΩ and an event E ⊂ Ω, the con-
ditional probability measure given E is an updated proba-
bility measure on Ωwhich accounts for the information that
the result ω of the random experiment falls in E:

P(F | E) =
P(F ∩ E)
P(E)

2 The conditional probability mass function of Y given
{X = x} is mY | X=x(y) = mX,Y(x, y)/mX (x).

3 Bayes’ theorem tells us how to update beliefs in light
of new evidence. It relates the conditional probabilities
P(A | E) and P(E | A):

P(A | E) =
P(E | A)P(A)

P(E)
=

P(E | A)P(A)

P(E | A)P(A) + P(E | Ac)P(Ac)
.

4 Two events E and F are independent if P(E ∩ F) =
P(E)P(F).

5 Two random variables X and Y are independent if the
every pair of events of the form {X ∈ A} and {Y ∈ B} are
independent, where A ⊂ R and B ⊂ R.

6 The PMF of the joint distribution of a pair of independent
random variables factors as mX,Y(x, y) = mX (x)mY(y):

Probability: Expectation and Variance

1 The expectation E[X] (or mean µX ) of a random variable
X is the probability-weighted average of X:

E[X] = ∑
ω∈Ω

X(ω)m(ω)

2 The expectation E[X] may be thought of as the value of
a random game with payout X, or as the long-run average
of X over many independent runs of the underlying experi-
ment. The Monte Carlo approximation of E[X] is obtained
by simulating the experiment many times and averaging the
value of X.

3 The expectation is the center of mass of the distribution
of X:

4 The expectation of a function of a discrete random vari-
able (or two random variables) may be expressed in terms of
the PMF mX of the distribution of X (or the PMF m(X,Y) of
the joint distribution of X and Y):

E[g(X)] = ∑
x∈R

g(x)mX (x)

E[g(X, Y)] = ∑
(x,y)∈R2

g(x, y)m(X,Y)(x, y).

5 Expectation is linear: if c ∈ R and X and Y are random
variables defined on the same probability space, then

E[cX + Y] = cE[X] +E[Y]

6 The variance of a random variable is its average squared
deviation from its mean. The variance measures how spread
out the distribution of X is. The standard deviation σ(X) is
the square root of the variance.

7 Variance satisfies the properties, if X and Y are indepen-
dent random variables and a ∈ R:

Var(aX) = a2 Var X
Var(X + Y) =Var(X) + Var(Y)

8 The covariance of two random variables X and Y is the
expected product of their deviations from their respective
means µX = E[X] and µY = E[Y]:

Cov(X, Y) = E[(X − µX )(Y − µY)] = E[XY]−E[X]E[Y].

9 The covariance of two independent random variables is
zero, but zero covariance does not imply independence.

10 The correlation of two random variables is their nor-
malized covariance:

Corr(X, Y) =
Cov(X, Y)
σ(X)σ(Y)

∈ [−1, 1]

11 The covariance matrix of a vector X = [X1 , . . . , Xn ] of
random variables defined on the same probability space is
defined to be the matrix Σ whose (i, j)th entry is equal to
Cov(Xi , Xj). If E[X] = 0, then Σ = E[XX′ ].

Probability: Continuous Distributions

1 IfΩ ⊂ Rn andP(A) =
∫

A f , where f ≥ 0 and
∫
Rn f = 1,

then we call (Ω,P) a continuous probability space.

xa b

f (x)

P([a, b])

2 The function f is called a density, because it measures
the amount of probability mass per unit volume at each point
(2D volume = area, 1D volume = length).

3 If (X, Y) is a pair of random variables whose joint distri-
bution has density fX,Y : R2 → R, then the conditional dis-
tribution of Y given the event {X = x} has density fY | X=x
defined by

fY | {X=x}(y) =
fX,Y(x, y)

fX (x)
,

where fX (x) =
∫ ∞

−∞
f (x, y)dy is the PDF of X.

4 If a random variable X has density fX on R, then

E[g(X)] =
∫
R

g(x) fX (x)dx.

5 CDF sampling: F−1(U) has CDF F if fU = 1[0,1] .

Probability: Conditional Expectation

1 The conditional expectation of a random variable given
an event is the expectation of the random variable calculated
with respect to the conditional probability measure given
that event: if (X, Y) has PMF mX,Y , then

E[Y | X = x] = ∑
y∈R

ymY | X=x(y),

where mY | X=x(y) =
mX,Y (x,y)

mX (x) . If (X, Y) has pdf fX,Y , then

E[Y | X = x] =
∫
R

y fY | X=x(y)dy.

2 The conditional expectation of a random variable Y given
another random variable X is obtained by substituting X for
x in the expression for the conditional expectation of Y given
X = x. Thus E[Y | X] is a random variable.

3 If X and Y are independent, then E[Y | X] = E[Y]. If Z is
a function of X, then E[ZY | X] = ZE[Y | X].

4 The law of iterated expectation: E[E[Y | X]] = E[Y].

Probability: Common Distributions

1 Bernoulli (Ber(p)): A weighted coin flip.

10

µ = p

σ
2 = p(1 − p)p

1 − p

2 Binomial (Bin(n, p)): A sum of n independent Ber(p)’s.

n0

m(k) = (n
k)pk(1 − p)n−k

µ = np

σ
2 = np(1 − p)
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3 Geometric (Geom(p)): Time to first success (1) in a se-
quence of independent Ber(p)’s.

m(k) = p(1 − p)k−1

µ = 1

p

σ
2 =

1−p
p2

4 Poisson distribution (Poiss(λ)): Limit as n → ∞ of
Binomial(n, λn ).

k

m(k) = λk

k!
e−λ

µ = λ

σ2 = λ

5 Exponential distribution (Exp(λ)): Limit as n → ∞ of
distribution of 1/n times a Geometric(λ/n).

f (x) = λe
−λx

µ = 1

λ

σ2 = 1

λ2

6 Normal distribution (N (µ,σ2)): Limit as n → ∞ of
the distribution of X1+X2+···+Xn√

n , for any independent se-
quence X1 , . . . , Xn of identically distributed random vari-
ables (i.i.d.) with E[X1 ] = µ and Var(X1) = σ2 < ∞ (see
Central Limit Theorem).

x

f (x) = 1

σ
√

2π
e
−

(x−µ)2

2σ2

µ

σσ

7 Multivariate normal distribution (N (0, Σ)): if Z =
(Z1 , Z2 , . . . , Zn) is a vector of independent N (0, 1)’s, A is an
m × n matrix of constants, and µ ∈ Rm , then the vector

X = AZ + µ

is multivariate normal. The covariance matrix of X is Σ =
AA′ .

Probability: Central Limit Theorem

1 A sequence of random variables X1 , X2 , . . . , converges
in probability to X if P(|Xn − X| > ε) → 0 as n → ∞, for
any ε > 0.

2 A sequence ν1 , ν2 , . . . of probability measures onRn con-
verges to a probability measure ν if νn(A) → ν(A) for every
set A ⊂ Rn with the property that ν(∂A) = 0 (intuitively,
two measures are close if they put approximately the same
amount of mass in approximately the same places). We say
Xn converges in distribution to ν if the distribution of Xn
converges to ν.

3 Chebyshev’s inequality: if X is a random variable with
variance σ2 < ∞, then X differs from its mean by more than
k standard deviations with probability at most k−2 :

P(|X −E[X]| > kσ) ≤ 1
k2

4 Law of large numbers: if X1 , X2 , . . . is a sequence of in-
dependent observations from a finite-variance distribution
with mean µ, then the sequence’s running average converges
in probability to µ: for all ε > 0,

P
(

X1 + · · ·+ Xn
n

/∈ [µ− ε,µ+ ε]

)
→ 0,

as n → ∞.

5 The PDF of a sum of n independent observations from
a finite-variance distribution looks increasingly bell-shaped
as n increases, regardless of the distribution being sampled from.

k

P
(S

n
=

k
)

1
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n = 1
n = 4
n = 7
n = 10
n = 13
n = 16

PMFs for sums of n fair coin flips

6 We define the standardized running sum of X1 , X2 , . . .
to have zero mean and unit variance for all n ≥ 1:

S∗n =
X1 + X2 + · · ·+ Xn − nµ

σ
√

n

7 Central limit theorem: the sequence of standardized
sums of an i.i.d. sequence of finite-variance random variables
converges in distribution to N (0, 1): for any interval [a, b],
we have

P(S∗n ∈ [a, b]) →
∫ b

a

1√
2π

e−t2/2 dt

as n → ∞.

8 Multivariate central limit theorem: If X1 , X2 , . . . is a se-
quence of independent random vectors whose common dis-
tribution has mean µ and covariance matrix Σ, then

X1 + X2 + · · ·+ Xn − nµ√
n

converges in distribution to N (0, Σ).

9 The central limit theorem explains the ubiquity of the
normal distribution in statistics: many random quantities
may be realized as a sum of a multitude of independent con-
tributions.

Statistics: Point estimation

1 The central problem of statistics is to make inferences
about a population or data-generating process based on the
information in a finite sample drawn from the population.

2 Parametric estimation involves an assumption that the
distribution of the data-generating process comes from a
family of distributions parameterized by finitely many real
numbers, while nonparametric estimation does not. Exam-
ples: An estimator that assumes the data are normally distributed
is parametric, while histograms are nonparametric.

3 Point estimation is the inference of a single real-valued
feature of the distribution of the data-generating process
(such as its mean, variance, or median).

4 A statistical functional is any function T from the set of
distributions to [−∞, ∞]. An estimator θ̂ is a random vari-
able defined in terms of n i.i.d. random variables, the pur-
pose of which is to approximate some statistical functional of
the random variables’ common distribution. Example: Sup-
pose that T(ν) = the mean of ν, and that θ̂ = (X1 + · · ·+ Xn)/n.

5 The empirical measure ν̂ of X1 , . . . , Xn is the probabil-
ity measure which assigns mass 1

n to each sample’s location.
The plug-in estimator of θ = T(ν) is obtained by applying
T to the empirical measure: θ̂ = T(ν̂).

6 Given a distribution ν and a statistical functional T, let
θ = T(ν). The bias of an estimator of θ is the difference be-
tween the estimator’s expected value and θ. Example: The
expectation of the sample mean θ̂ = (X1 + · · · + Xn)/n is
E(X1 + · · · + Xn)/n = E[ν], so the bias of the sample mean
is zero.

7 The standard error se(θ̂) of an estimator θ̂ is its standard
deviation.

8 An estimator is consistent if θ̂ → θ in probability as
n → ∞.

9 The mean squared error of an estimator is defined to be

MSE(θ) = E[(θ̂− θ)2 ].

10 MSE is equal to variance plus squared bias. Therefore,
MSE converges to zero as the sample size goes to ∞ if and
only if variance and bias both converge to zero.

Statistics: Confidence intervals

1 Consider an unknown probability distribution ν from
which we get n independent observations X1 , . . . , Xn , and
suppose that θ is the value of some statistical functional of ν.
A confidence interval for θ is an interval-valued function of
the sample data X1 , . . . , Xn . A confidence interval has con-
fidence level 1 − α if it contains θ with probability at least
1 − α.

2 If θ̂ is unbiased, then
(
θ̂− k se(θ̂), θ̂+ k se(θ̂)

)
is a 1 −

1
k2 confidence interval, by Chebyshev’s inequality.

3 If θ̂ is unbiased and approximately normally distributed,
then

(
θ̂− 1.96 se(θ̂), θ̂+ 1.96 se(θ̂)

)
is an approximate 95%

confidence interval, since 95% of the mass of the standard
normal distribution is in the interval [−1.96, 1.96].

4 Let I ⊂ R, and suppose that T is a function from the set
of distributions to the set of real-valued functions on I. A
1 − α confidence band for T(ν) is pair of random functions
ymin and ymax from I to R defined in terms of n indepen-
dent observations from ν and having ymin ≤ T(ν) ≤ ymax
everywhere on I with probability at least 1 − α.

Statistics: Empirical CDF convergence

1 Statistics is predicated on the idea that a distribution is
well-approximated by indepen-
dent observations therefrom.
The Glivenko-Cantelli theorem
is one formalization of this idea:
If F is the CDF of a distribution
ν and F̂n is the CDF of the
empirical distribution ν̂n of n
observations from ν, then Fn
converges to F

ǫ

F̂20

F

Unif([0,1])

along the whole number line:
max
x∈R

|F(x)− F̂n(x)| → 0 as n → ∞,

in probability.

2 The Dvoretzky-Kiefer-Wolfowitz inequality (DKW)
says that the graph of F̂n lies in the ε-band around the graph
of F with probability at least 1 − 2e−2nε2 .

Statistics: Bootstrapping

1 Bootstrapping is the use of simulation to approximate
the value of the plug-in estimator of a statistical functional
which is expressed in terms of independent observations
from ν.
Example: if θ = T(ν) is the variance of the median of 3 inde-
pendent observations from ν, then the bootstrap estimate of θ is ob-
tained as a Monte Carlo approximation of T(ν̂): we sample 3 times
(with replacement) from {X1 , . . . , Xn}, record the median, repeat
B times for B large, and take the sample variance of the resulting
list of B numbers.

2 The bootstrap approximation of T(ν̂) may be made as
close to T(ν̂) as desired by choosing B large enough. The
difference between T(ν) and T(ν̂) is likely to be small if n is
large (that is, if many observations from ν are available).

3 The bootstrap is useful for computing standard errors,
since the standard error of an estimator is often infeasible to
compute analytically but conducive to Monte Carlo approx-
imation.

Statistics: Maximum likelihood estimation

1 Maximum likelihood estimation is a general approach
for proposing an estimator. Consider a parametric family
{ f„(x) : „ ∈ Rd} of PDFs or PMFs. Given x ∈ Rn , the
likelihood Lx : Rd → R is defined by

Lx(„) = f„(x1) f„(x2) · · · f„(xn).

If X is a vector of n independent observations drawn from
f„(x), then LX(„) is small or zero when „ is not in accor-
dance with the observed data.

Example: Suppose x 7→ f (x; θ) is the density of a uniform ran-
dom variable on [0, θ]. We observe four observations drawn from
this distribution: 1.41, 2.45, 6.12, and 4.9. Then the likelihood of
θ = 5 is zero, and the likelihood of θ = 106 is very small.

2 The maximum likelihood estimator is

„̂MLE = argmax
„∈Rd LX(„).

Equivalently, „̂MLE = argmax
„∈Rd `X(„), where `x(„) de-

notes the logarithm of Lx(„).

Example: Suppose that x 7→ f (x;µ,σ2) is the normal density
with mean µ and variance σ2 . Then the maximum likelihood esti-
mator is the minimizer of the log-likelihood

− n
2

log 2π− n logσ− (X1 − µ)2

2σ2 − · · · − (Xn − µ)2

2σ2

Setting the derivatives with respect to µ and σ2 equal to zero, we
find µ = X = 1

n (X1 + · · ·+ Xn) and σ2 = 1
n ((X1 − X)2 +
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· · · + (Xn − X)2). So the maximum likelihood estimators agree
with the plug-in estimators.

3 MLE enjoys several nice properties: under certain regu-
larity conditions, we have (stated for θ ∈ R1):

(i) Consistency: E[(θ̂ − θ)2 ] → 0 as the number of obser-
vations goes to ∞.

(ii) Asymptotic normality: (θ̂ − θ)/
√

Var θ̂ converges to
N (0, 1) as the number of observations goes to ∞.

(iii) Asymptotic optimality: the MSE of the MLE converges
to 0 approximately as fast as the MSE of any other con-
sistent estimator.

4 Potential difficulties with the MLE:

(i) Computational challenges. It might be hard to work
out where the maximum of the likelihood occurs, either
analytically or numerically.

(ii) Misspecification. The MLE may be inaccurate if the dis-
tribution of the observations is not in the specified para-
metric family.

(iii) Unbounded likelihood. If the likelihood function is not
bounded, then θ̂ is not well-defined.

Statistics: Hypothesis testing

1 Hypothesis testing is a disciplined framework for adju-
dicating whether observed data do not support a given hy-
pothesis.

2 Consider an unknown distribution from which we will
sample n observations X1 , . . . Xn .

(i) We state a hypothesis H0–called the null hypothe-
sis–about the distribution.

(ii) We come up with a test statistic T, which is a function
of the data X1 , . . . Xn , for which we can evaluate the dis-
tribution of T assuming the null hypothesis.

(iii) We give an alternative hypothesis Ha under which T is
expected to be significantly different from its value un-
der H0 .

(iv) We give a significance level α (like 5% or 1%), and based
on Ha we determine a set of values for T—called the
critical region—which T would be in with probability at
most α under the null hypothesis.

(v) After setting H0 , Ha , ¸, T , and the critical region,
we run the experiment, evaluate T on the sample we get,
and record the result as tobs .

(vi) If tobs falls in the critical region, we reject the null hy-
pothesis. The corresponding p-value is defined to be the
minimum α-value which would have resulted in reject-
ing the null hypothesis, with the critical region chosen
in the same way*.

Example: Muriel Bristol claims that she can tell by taste whether
the tea or the milk was poured into the cup first. She is given eight
cups of tea, four poured milk-first and four poured tea-first.

We posit a null hypothesis that she isn’t able to discern the pour-
ing method, under which the number of cups identified correctly is
4 with probability 1/(8

4) ≈ 1.4% and at least 3 with probability
17/70 ≈ 24%. Therefore, at the 5% significance level, only a cor-
rect identification of all the cups would give us grounds to reject
the null hypothesis. The p-value in that case would be 1.4%.

3 Failure to reject the null hypothesis is not necessarily evi-
dence for the null hypothesis. The power of a hypothesis test
is the conditional probability of rejecting the null hypothesis
given that the alternative hypothesis is true. A p-value may
be high either because the null hypothesis is true or because
the test has low power.

4 The Wald test is based on the normal approximation.
Consider a null hypothesis θ = 0 and the alternative hypoth-
esis θ 6= 0, and suppose that θ̂ is approximately normally

distributed. The Wald test rejects the null hypothesis at the
5% significance level if |θ̂| > 1.96 se(θ̂).

5 The random permutation test is applicable when the
null hypothesis is that the mean of a given random variable
is equal for two populations.

(i) We compute the difference between the sample means
for the two groups.

(ii) We randomly re-assign the group labels and compute
the resulting sample mean differences. Repeat many
times.

(iii) We check where the original difference falls in the sorted
list of re-sampled differences.

Example: Suppose the heights of the Romero sons are 72, 69, 68,
and 66 inches, and the heights of the Larsen sons are 70, 65, and 64
inches. Consider the null hypothesis that the expected heights are
the same for the two families, and the alternative hypothesis that
the Romero sons are taller on average (with α = 5%). We find that
the sample mean difference of about 2.4 inches is larger than 88.5%
of the mean differences obtained by resampling many times. Since
88.5% < 95%, we retain the null hypothesis.

6 If we conduct many hypothesis tests, then the probabil-
ity of obtaining some false rejections is high (xkcd.com/882).
This is called the multiple testing problem. The Bonferroni
method is to reject the null hypothesis only for those tests
whose p-values are less than α divided by the number of hy-
pothesis tests being run. This ensures that the probability
of having even one false rejection is less than α, so it is very
conservative.

Statistical Learning: Theory

1 Statistical learning: Given some observations from a
probability space with an unknown probability measure, we
seek to draw conclusions about the measure.

2 Supervised learning: (X, Y) is drawn from an unknown
probability measure P on a product space X × Y , and we
aim to predict Y given X, based on a i.i.d. collection of obser-
vations from P (the training data).

Example: X = [X1 , X2 ], where X1 is the color of a banana, X2
is the weight of the banana, and Y is a measure of deliciousness.
Values of X1 , X2 , and Y are recorded for many bananas, and they
are used to predict Y for other bananas whose X values are known.

3 We call the components of X features, predictors, or input
variables, and we call Y the response variable or output variable.

4 A supervised learning problem is a regression problem
if Y is quantitative (Y ⊂ R) and a classification problem if
Y is a set of labels.

5 To choose a prediction function h : X → Y , we specify a

(i) a space H of candidate functions, and
(ii) a loss (or risk) functional L from H to R.

The target function is argminh∈H L(h).

6 If the loss functional for a regression problem is

L(h) = E[(h(X)− Y)2 ]

and H contains r(x) = E[Y |X = x], then r is the target func-
tion. If the loss functional for a classification problem is

L(h) = E
[
1{h(X) 6=Y}

]
,

and H contains G(x) = argmaxc P(Y = c |X = x), then G is
the target function.

7 Since P is unknown, we must approximate the target
function with a function ĥ whose values can be computed
from the training data. A learner is a function which takes a
set of training data and returns a prediction function ĥ.

8 The empirical probability measure onX ×Y is the mea-
sure which assigns a probability mass of 1

n to the location
of each training sample (X1 , Y1), (X2 , Y2), . . . , (Xn , Yn). The
empirical risk of a candidate function h is the risk functional
evaluated with respect to the empirical measure of the train-
ing data. The empirical risk minimizer (ERM) is the func-
tion which minimizes empirical risk.

9 Generalization error (or test error) is the difference be-
tween empirical risk and the actual value of the risk func-
tional.

10 The ERM can overfit, meaning that test error and L(ĥ)
are large despite small empirical risk.

Example: if H is the space of polynomials and no two training ob-
servations have the same x values, then then there are functions in
H which have zero empirical risk.

risk minimizer

empirical risk
minimizer

x

y

11 Mitigate overfitting with inductive bias:

(i) Use a restrictive class H of candidate functions.
(ii) Regularize: add a term to the loss functional which

penalizes complexity.

12 Inductive bias can lead to underfitting: relevant rela-
tions are missed, so both training and test error are larger
than necessary. The tension between the costs of high in-
ductive bias and the costs of low inductive bias is called the
bias-complexity (or bias-variance) tradeoff.

13 No-free-lunch theorem: all learners are equal on aver-
age (over all possible problems), so inductive bias appropri-
ate to a given type of problem is essential to have an effective
learner for that type of problem.

Statistical Learning: Kernel density estimation

1 Given n observations X1 , . . . , Xn from a distribution with
density f on R, we can estimate the PDF of the distribu-
tion by placing 1/n units of probability mass in a small pile
around each sample.

2 We choose a kernel function for the shape of each pile:

1−1

D(u) = 70

81
(1 − |u|3)3

for |u| ≤ 1

total mass = 1

3 The width of each pile is specified by a bandwidth λ:
Dλ(u) = 1

λ D
( u
λ

)
.

4 The kernel density estimator with bandwidth λ is the
sum of the piles at each sample:

f̂λ(x) =
1
n

n
∑
i=1

Dλ(x − Xi).

5 To choose a suitable bandwidth, we seek to minimize the
integrated squared error (ISE) L( f ) =

∫
R( f − f̂ )2 .

6 We approximate the minimizer of L with the minimizer
of the cross-validation loss estimator

J( f ) =
∫
R

f̂ 2
λ − 2

n

n
∑
i=1

f̂ (−i)
λ

(Xi),

where f̂ (−i)
λ

is the KDE with the ith sample omitted.

7 If f is a density on R2 , then we use the KDE

f̂λ(x, y) =
1
n

n
∑
i=1

Dλ(x − Xi)Dλ(y − Yi).

2λ

x

y

8 Stone’s theorem says that the ratio of the CV ISE to the
optimal-λ ISE converges to 1 in probability as n → ∞. Also,
the optimal λ goes to 0 like 1

n1/5 , and the minimal ISE goes

to 0 like 1
n4/5 .

9 The Nadaraya-Watson nonparametric regression estima-
tor r̂(x) computes E[Y | X = x] with respect to the estimated
density f̂λ . Equivalently, we average the Yi ’s, weighted ac-
cording to horizontal distance from x:

n
∑
i=1

Yi D(x − Xi)

/ n
∑
i=1

D(x − Xi).

Statistical Learning: Parametric regression

1 Parametric regression uses a familyH of candidate func-
tions which is indexed by finitely many parameters.

2 Linear regression uses the set of affine functions: H =
{x 7→ β0 + [β1 , . . . ,βp ] · x : β0 , . . .βp ∈ R}.

3 We choose the parameters to minimize a risk function,
customarily the residual sum of squares:

RSS(˛) =
n
∑
i=1

(yi − β0 − ˛ · xi)
2 = |y − X˛|2 ,

where y = [y1 , . . . , yn ], ˛ = [β0 , . . . ,βp ], and X is an
n × (p + 1) matrix whose ith row is a 1 followed by the com-
ponents of xi .

x

y

4 The RSS minimizer is ˛ = (X′X)−1X′Y.

5 We can use the linear regression framework to do poly-
nomial regression, since a polynomial is linear in its coeffi-
cients: we supplement the list of features with products of
the original regressors.

6 Regularizing linear regression by penalizing the sum of
the squares of the regression coefficients is called ridge re-
gression, while penalizing the sum of the absolute values of
the coefficients is called lasso regression.

xkcd.com/882
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Statistical Learning: Optimal classification

1 Consider a classification problem with feature set X and
class set Y . For each y ∈ Y , we define py = P(Y = y) and
let fy be the conditional PMF or PDF of X given {Y = y} (y’s
class conditional distribution).

2 Given a prediction function (or classifier) h and an enu-
meration of the elements of Y as {y1 , y2 , . . . , y|Y|}, we define
the (normalized) confusion matrix of h to be the |Y| × |Y|
matrix whose (i, j)th entry is P(h(X) = yi |Y = yj).

3 If Y = {−,+}, the conditional probability of correct
classification given a positive sample is the detection rate
(DR), while the conditional probability of incorrect classifi-
cation given a negative sample is the false alarm rate (FAR).

4 The precision of a classifier is the conditional probabil-
ity that a sample is positive given that the classifier predicts
positive, and recall is a synonym of detection rate.

5 The Bayes classifier G(x) = argmaxy py fy(x) minimizes
the misclassification probability but gives equal weight to
both types of misclassification.

6 The likelihood ratio test generalizes the Bayes classi-
fier by allowing a variable tradeoff between false-alarm rate
and detection rate: given t > 0, we say ht(x) = −1 if
f+(x)/ f−(x) < t and ht(x) = 1 otherwise.

7 The Neyman-Pearson lemma says that no classifier does
better on both false alarm rate and detection rate than ht .

8 The receiver operating characteristic of ht is the curve
{(FAR(ht), DR(ht)) : t ∈ [0, ∞]}.
The AUROC (area under the
ROC) is close to 1 for an excellent
classifier and close to 1

2 for a
worthless one. NP says that
no classifier is above the ROC.
We choose a point on the ROC
curve based on context-specific
considerations.

poor

good

0 1

1

AUROC

false alarm rate
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Statistical Learning: QDA, LDA, Naive Bayes

1 Quadratic discriminant analysis (QDA) is a classifica-
tion algorithm which uses the training data to estimate the
mean —y and covariance matrix Σy of each class conditional
distribution:

—̂y = mean({xi : yi = y})

Σ̂y = mean({(xi − —̂y)(xi − —̂y)
′ : yi = y}).

Each distribution is assumed to be multivariate normal
(N (—̂y , Σ̂y)) and the classifier h(y) = argmaxy p̂y f̂y(x) is
proposed (where { p̂y : y ∈ Y} are the class proportions
from the training data).

2 Linear discriminant analysis (LDA) is the same as QDA
except the class covariance matrices are assumed to be equal
and are estimated using all of the data, not just class-specific
observations.

3 QDA and LDA are so named because they yield class
prediction boundaries which are quadric surfaces and hy-
perplanes, respectively.

4 A Naive Bayes classifier assumes that the features are
conditionally independent given Y:

fy(x1 , . . . , xp) = fy,1(x1) · · · fy,d(xp),

for some fy,1 , . . . fy,p . Assumption-satisfying examples:

QDA LDA Naive Bayes

Statistical Learning: Logistic regression

1 Logistic regression for binary classification estimates
r(x) = P(Y = 1 | X = x) as a logistic function of a linear
function of x:

r̂(x) = σ(˛ · x + α),

where

σ(x) =
1

1 + e−x .

1

t

σ(t)

2 We choose α and β1 , . . . ,βp to minimize the risk

L(r) =
n
∑
i=1

[
yi log

1
r(xi)

+ (1 − yi) log
1

1 − r(xi)

]
,

which applies large penalty if yi = 1 and r(xi) is close to
zero or if yi = 0 and r(xi) is close to 1.

3 L is convex, so it can be reliably minimized using numer-
ical optimization algorithms.

Statistical Learning: Support vector machines

1 A support vector machine
(SVM) chooses a hyperplane
H ⊂ Rp and predicts classifica-
tion (Y = {−1,+1}) based on
which side of H the feature vec-
tor x lies on.

2 x 7→ sgn(˛ · x + α) is the
prediction function, where
H = {x ∈ Rp : ˛ · x + α = 0}.

3 We train the SVM with the
risk

L(˛,α) = λ|˛|2 +
1
n

n
∑
i=1

[
1 − yi(˛ · xi + α)

]
+

where [u]+ denotes max(0, u), the positive part of u.

4 The parameters ˛ and α encode both H and the a
distance—called the margin—from H to a parallel hyper-
plane where we begin penalizing for lack of decisively cor-
rect classification. The margin is 1/|˛| (and can be adjusted
without changing H by scaling ˛ and α).

˛ · x + α = 0

˛ · x + α = −1

˛ · x + α = 1

1
|˛|

penalty for
observations

of class −1

1.5

2.15

0

0

m
ar

gi
n

5 If λ is small, then the optimization prioritizes the cor-
rectness term and uses a small margin if necessary. If λ is
large, the optimization must minimize a large-margin in-
correctness penalty. A value for λ may be chosen by cross-
validation.

6 Applying a function φ to map the feature vectors to a
higher dimensional allows us to find nonlinear separating
surfaces in the original feature space. The function K =
(x, y) 7→ φ(x) · φ(y) is called the kernel associated with the
transformation φ. Finding the separating hyperplane in the
higher dimensional space comes down to finding a vector ”

solving the problem (with � and 4 as pointwise operations,
1 a vector of ones, and Ki,j = φ(xi) · φ(xj) = K(xi , xj))

minimize 1
2
(”� y)′K(”� y)−1′”

subject to 0 4 ” 4 C and ”′y = 0.

The prediction vector for an ntest × n feature matrix Xtest is
Ktest(”̂� y) + α̂1,

where Ktest is the ntest × n matrix whose (i, j)th entry is ob-
tained by applying K to the ith row of Xtest and the jth row
of X, and where α̂ is any entry of

y −K(”̂′y)
for which the corresponding entry in ”̂ is strictly between 0
and C. Only the support vectors (ηi > 0) need be retained.

7 The prediction function (before taking the sign) is a con-
stant plus a linear combination of functions of the form
x 7→ K(x, xi), where xi is the
ith training observation. Exam-
ple shown for 2D feature space
with radial basis function kernel
K(xi , xj) = e

−|xi−xj |
2

.

Statistical Learning: Trees and Ensemble Methods

1 A decision tree classifier maps features to response us-
ing a flowchart consisting of single-feature decisions.

petal length > 3.75

sepal width > 3

virginica versicolor

setosa

2 The Gini impurity of a list of classified objects is the
probability that two independent random elements from the
list have different classes: if p1 , . . . , pk are the class propor-
tions, then

G = 1 − (p2
1 + · · ·+ p2

k ).

3 CART is a greedy decision tree training algorithm. Each
node in the tree, starting from the first node, chooses its fea-
ture and threshold so as to separate classes as much as pos-
sible: it minimizes p1G1 + p2G2 , where p1 and p2 are the
proportion of training observations that go to the two child
nodes and G1 and G2 are the child-node Gini impurities.

4 A random forest classifier takes a vote among an ensem-
ble of random decision trees. The decision trees may be ran-
domized by training on a with-replacement random sample
of the training data (this is called bagging) or by randomly
restricting the set of features searched for splits at each node.

5 Another ensemble method is boosting: we train a model
on the original data, then train another model to address the
deficiencies of the first one, etc. Adaboost weights training
observations for the next model in the stack based how in-
accurately they’re being predicted with the current model.
Gradient boosting fits the next model on the residuals (the
differences between response and currently predicted re-
sponse).

Statistical Learning: Neural networks

1 A multilayer perceptron N : Rp → Rq is a composition
of affine transformations and componentwise applications
of a function K : R → R.

(i) We call K the activation function. Common choices:
(a) u 7→ max(0, u) (rectifier, or ReLU)
(b) u 7→ 1/(1 + e−u) (logistic)

(ii) Component-wise application of K on Rt refers to the
function K.(x1 , . . . , xt) = (K(x1), . . . , K(xt)).

(iii) An affine transformation from Rt to Rs is a map of
the form A(x) = Wx + b, where W is an s × t ma-
trix and b ∈ Rs . Entries of W are called weights and
entries of b are called biases.

 1
−2
3


input (xi ∈ Rp)

[
−3
4

] [
0
4

] 
3
1
2
−5




3
1
2
0

 [
−1
−1

] [
−1
−1

]
output (N(xi) ∈ Rq)

∣∣∣∣[ −1
−1

]
−

[
3
2

]∣∣∣∣2 = 25

cost

[
3
2

]
desired output (yi)

A1 K. A2 K. A3 id Ci

(W1, b1) (W2, b2) (W3, b3)

2 The architecture of a neural network is the sequence of
dimensions of the domains and codomains of its affine maps.
For example, a neural net with W1 ∈ R5×3 , W2 ∈ R4×5 , and
W3 ∈ R1×4 has architecture [3, 5, 4, 1].

3 Given a training sample {(xi , yi)}N
i=1 , we obtain a

neural net regression function by minimizing L(N) =
n
∑
i=1

C(N(xi), yi) where C(y, yi) = |y − yi |2 .

4 For classification, we

(i) let yi = [0, . . . , 0, 1, 0, . . . 0] ∈ R|Y| , with the location of
the nonzero entry indicating class (this is called one-hot
encoding),

(ii) replace the identity map in the diagram with the soft-

max function u 7→
[
e

uj /
(
∑n

k=1 euk
)]|Y|

j=1
, and

(iii) replace the cost function with C(y, yi) = − log(y · yi).

5 When the weight matrices are large, they have many pa-
rameters to tune. We use a custom optimization scheme:

(i) Start with random weights and a training input xi .

(ii) Forward propagation: apply each successive map and
store the vectors at each green or purple node. The vec-
tors stored at the green nodes are called activations.

(iii) Backpropagation: starting with the last green node
and working left, compute the change in cost per small
change in the vector at each green or purple node. By
the chain rule, each such gradient is equal to the gradi-
ent computed at right-adjacent node times the deriva-
tive of map between the two nodes. The derivative of Aj

is Wj , and the derivative of K. is v 7→ diag
((

dK
du

)
.
(v)
)

.

(iv) Compute the change in cost per small change in the
weights and biases at each blue node. Each such gra-
dient is equal to the gradient stored at the next purple
node times the derivative of the intervening affine map.
We have ∂(Wx+b)

∂b = I and v ∂(Wx+b)
∂W = v′x′ .

(v) Stochastic gradient descent: repeat (ii)–(iv) for each
sample in a randomly chosen subset of the training set and
determine the average desired change in weights and bi-
ases to reduce the cost function. Update the weights and
biases accordingly and iterate to convergence.

Statistical Learning: Dimension reduction

1 The goal of dimension reduction is to map a set of n
points inRp to a lower-dimensional spaceRk while retaining
as much of the data’s structure as possible.
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2 Dimension reduction can be used as a visualization aid
or as a feature pre-processing step in a machine learning
model.
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digit images

first two principal components

3 Structure may be taken to mean variation about the center,
in which case we use principal component analysis:

(i) Store the points’ components in an n × p matrix,
(ii) de-mean each column,

(iii) compute the SVD UΣV′ of the resulting matrix, and
(iv) let W be the first k columns of V.

Then WW′ : Rp → Rp is the rank-k projection matrix which
minimizes the sum of squared projection distances of the
points, and W′ : Rp → Rk maps each point to its coordinates
in that k-dimensional subspace (with respect to the columns
of W).

4 Structure may be taken to mean pairwise proximity of
points, which stochastic neighbor embedding attempts to
preserve. Given the data points x1 , . . . , xn and a parameter
ρ, we define

Pi,j(σ) =
e
−|xi−xj |

2/(2σ2)

∑k 6=j e
−|xk−xj |2/(2σ2)

,

and for each j we define σj to be the solution σ of the equa-
tion

2
−∑i 6=j Pi,j (σ) log2 Pi,j (σ) = ρ.

The values Pi,j = Pi,j(σj) describe the neighborliness of
each point i with respect to point j; they sum to 1 over all
points. Fixing the perplexity ρ ensures they neither concen-
trate nor spread out too much. For a given choice of locations
x̃1 , . . . , x̃n in Rk , we define

Qi,j =
(1 + |x̃i − x̃j |2)−1

∑k 6=j(1 + |x̃k − x̃j |2)−1 .

We use gradient descent on x̃1 , . . . , x̃n to minimize

C(x̃1 , . . . , x̃n) = ∑
1≤i 6=j≤n

Pi,j log2
Pi,j

Qi,j
.
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Statistical Learning: Bayesian inference

1 In contrast to frequentist statistics, which represents
model parameters as fixed and unknown, Bayesian statistics
regards model parameters as random variables with a spec-
ified prior distribution. Observed data are used to obtain an
updated posterior distribution, via Bayes’ theorem. Example:
the prior for the heads probabil-
ity of a weighted coin might be
stipulated to be uniform on [0, 1].
Then observing p heads and q tails
results in a posterior distribution
proportional to t 7→ tp(1 − t)q .
Frequentist statistics would in-
stead give a single point estimate
(such as the maximum likelihood
estimator p/(p + q)). 1

p
p+q

t

fposterior(t)

2 If the prior and posterior distributions belong to the
same family of distributions, they are called conjugate. Ex-
ample: heads-probability distributions of the form t 7→ tp(1 − t)q

on [0, 1] update under coin flip observations by incrementing the
exponents p and q, so they are conjugate priors for the coin flip
problem.

3 Posterior is proportional to likelihood times prior: if X
is the observed random variable and Θ the vector of model
parameters, then

posterior︷ ︸︸ ︷
f (θ | x) =

likelihood︷ ︸︸ ︷
f (x | θ)

prior︷︸︸︷
f (θ)

f (x)︸︷︷︸
marginal

where f (θ | x) is shorthand for the conditional density or
mass function of Θ given X = x.

4 Posterior distributions yield point estimates via mea-
sures of central tendency like the median or mean, as well
as Bayesian posterior intervals (similar to confidence inter-
vals) via their quantiles.

5 Bayesian and frequentist statistics often yield similar re-
sults in the limit: under quite general conditions, the pos-
terior distribution is approximately normal with mean con-
verging to the maximum likelihood estimator as the sample
size goes to ∞.

6 Bayesian analysis often involves evaluating integrals.

For example, the posterior mean is
∫
Rn θL(θ) f (θ)dθ∫
Rn L(θ) f (θ)dθ , where

L(θ) = f (x | θ) is the likelihood. These integrals are often
impossible to solve analytically or even approximate using
exact numerical methods in the case where the parameter
space is high-dimensional. One solution is to use Monte
Carlo methods: use the identity

∫
Rn g(x) f (x)dx = E[g(X)]

where X is a random vector with density f . The expectation
can be approximated by sampling repeatedly from the den-
sity f , using the law of large numbers.

7 Markov Chain Monte Carlo (MCMC) is useful for ap-
proximating

∫
Rn g(x) f (x)dx. Metropolis-Hastings is a

common class of MCMC algorithms: to sample from f , we:

(i) Fix a function q : Rn ×Rn →
R for which (a) x̃ 7→ q(x, x̃) is a
probability density on Rn , for all
x ∈ Rn , and (b) q(x, x̃) = q(x̃, x)
for all x, x̃ ∈ Rn .

(ii) Choose a starting point X0
in some way, and sample Xprop
from the proposal density x̃ 7→
q(X0 , x̃).

X0

X1

X4

X8

X9

f

q(X0, ·)

(iii) With probability f (Xprop)
f (X0)

(or 1, if this ratio exceeds 1),
accept the proposal and define X1 to be Xprop . Otherwise,
set X1 = X0 .

(iv) Repeat steps (ii) and (iii) to obtain X2 from X1 , X3

from X2 , and so on. The resulting sequence X0 , X1 , . . . has
the property that the distribution of Xn converges to f as
n → ∞, as well as the property that the mean of the list
[g(X0), g(X1), . . . , g(Xn)] converges to

∫
Rn g(x) f (x)dx.

8 Popular Metropolis algorithms:

• Hamiltonian Monte Carlo (HMC). Suitable for contin-
uous variables and much faster than plain Metropolis-
Hastings with a Gaussian proposal distribution. Requires
the ability to differentiate the density with respect to the
variables (often handled using autodiff).

• No U-Turn Sampler (NUTS). A common variant of HMC.
• Particle Gibbs (PG). Suitable for discrete variables.
• Gibbs Sampler. Gibbs sampling allows us to modify dif-

ferent variables using different samplers: we alternatingly
hold one set of variables fixed while proposing a Metropo-
lis update to the others, then hold the latter set fixed while
proposing an update to the former set.

9 One disadvantage of Bayesian statistics is the subjectivity
of the prior distribution. On the other hand, when a mean-
ingful prior is available, Bayesian statistics provides a natu-
ral way to combine that information with the observed data.
Frequentist and Bayesian statistics both have strengths and
weaknesses which can vary in importance depending on the
details of the problem at hand.

Statistical Learning: Graphical models

1 A Bayes net is a random vector together with a directed
acyclic graph (DAG) which models
conditional dependence relationships
among its components.

The random vector X = (X1 , . . . , X5)
and the graph shown make a Bayes net
if the distribution of X factors as a prod-
uct of conditional distributions as indi-
cated by the graph connections; that is,
if for all (x1 , . . . , x5), we have

X1

X3X2

X5X4

P(X = (x1 , x2 , . . . , x5)) =P(X1 = x1)×
P(X2 = x2 | X1 = x1)×
P(X3 = x3 | X1 = x1)×
P(X4 = x4 | X2 = x2 , X3 = x3)×
P(X5 = x5 | X3 = x3)

2 In many Bayes net applications, only some of the random
variables are observed. The others are called hidden or latent
variables. This missing information presents inference chal-
lenges.

3 A Gaussian mixture model (GMM) is a Bayes
net consisting of a discrete random variable Z and
a random variable X whose conditional distribution
given each possible value of Z is Gaussian.

Z

X

4 A hidden Markov model is a Bayes net consisting of
a chain of random variables Z1 , . . . , Zn (called hidden vari-
ables), each of which is the parent of a single random vari-
able Xi :

Z1 Z2 Z3 Zn

X1 X2 X3 Xn

5 Bayes net inference (drawing conclusions about the
model based on observed data) can be carried out us-
ing a maximum likelihood technique called expectation-
maximization (EM) or using Bayesian MCMC methods.

6 Expectation-Maximization is an iterative procedure for
parameter estimation in models with hidden variables: start

with a random guess for the parameters and find the con-
ditional distribution ζ of the hidden variables given the ob-
served variables and the current parameter guess. We then
treat as unknown the vector θ of all the model parameters,
and we compute—with respect to the measure ζ—the ex-
pected log likelihood function Q(θ). A new θ is chosen to
maximize Q, and the two steps are iterated to convergence.

Example. Consider a GMM with a {0, 1}-valued Z: we have
P(Z = 1) = α, and for each observation i and each j ∈ {0, 1},
the conditional distribution of Xi given Zi = j is normal with
mean —j and covariance Σj . All together, the parameter vector is
θ = (α,—0 , Σ0 ,—1 , Σ1). By Bayes’ theorem, the conditional dis-
tribution of Zi given Xi = xi is Bernoulli with success probability

πi =
α f1(xi)

α f1(xi) + (1 − α) f0(xi)
,

where f j is the normal density with mean —j and covariance Σj .
Then we have

Q(θ) = E
[

log
n

∏
i=1

(ziα f1(xi) + (1 − zi)(1 − α) f0(xi))

]

=
n
∑
i=1

πi [logα+ log f1(xi)]

+ (1 − πi)[log(1 − α) + log f0(xi)].

Optimizing, we get π-weighted counts, means, and covariance ma-
trices for α, —1 ,—0 , Σ1 and Σ0 .

In the EM iterations shown, membership probabilities πi , based on
current parameter estimates, are indicated by point color (E-step).
These values are used as weights to update the means and covari-
ances for the multivariate normal distributions (M-step).

7 A Probabilistic Programming Language (PPL) is a
framework for describing stochastic models and perform-
ing automated Bayesian inference on them. Examples: Stan
(a C++ library, callable from Julia/Python/R), PyMC3, and
Turing.jl.

8 A HMM example in Turing.jl (the object returned on the
last line will contain estimates for the parameters):

using Turing
@model HMM(x) = begin

n = length(x)
z = tzeros(Int64, n) # hidden states
p₁ ~ Uniform(0,1) # trans. prob. 1→1
p₂ ~ Uniform(0,1) # trans. prob. 2→1
P = [p₁ 1-p₁; p₂ 1-p₂] # transition matrix
z[1] ~ Categorical([0.5,0.5]) # start 1 or 2
x[1] ~ Normal(z[1],0.1)
for i=2:n

# choose next hidden state
z[i] ~ Categorical(P[z[i-1],:])
x[i] ~ Normal(z[i],0.1) # add noise

end
end
# choose parameters for samplers
hmc = HMC(2, 0.001, 7, :p₁, :p₂)
pg = PG(20, 1, :z)
G = Gibbs(1000, hmc, pg)
# perform inference (assuming the vector x
# contains empirical observations)
sample(HMM(x), G)
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Statistics: Causal Inference

1 The counterfactual model for an experiment with binary
input X and binary outcome Y posits two counterfactual ran-
dom variables C0 (the value of Y if X = 0 were to be chosen)
and C1 . The consistency equation says that Y = CX .

2 The association α = E[Y | X = 1] − E[Y | X = 0] and
average causal effect θ = E[C1 ]− E[C0 ] are not, in general,
equal.

3 If X is independent of (C0 , C1), then α = θ.

4 Randomized control trials determine X in a way that
is independent of (C0 , C1) (for example, by flipping a coin),
while observational studies do not ensure that X is inde-
pendent of (C0 , C1).

5 If X is not independent of (C0 , C1) but is conditionally
independent of (C0 , C1) given another observed variable Z,
then Z is a confounder. We can control for Z by finding
the adjusted treatment effect, which computes the associ-
ation conditioned on Z and averages. In other words, we
weighted-average the associations on each set {Z = z}, with
each such set getting weight P(Z = z).

6 If X and Y are continuous variables, we posit the exis-
tence of a random counterfactual function {C(x) : x ∈ R}
(which says what the value of Y would have been had X = x
been chosen, regardless of the actual observed value of X).

7 The regression function x 7→ E[Y | X = x] and the causal
regression function E[C(x)] are not, in general, equal. How-
ever, they are equal if X is independent of C. We can adjust
for Z by computing the regression conditioned on Z and av-
eraging with respect to the distribution of Z. If X and C are
conditionally independent given Z, then adjusted and causal
regression are equal.

8 If the regression function (x, y) 7→ E[Y | X = x, Z = z] is
linear, then we can adjust for a variable Z by fitting a linear
model with both X and Z as features.

Statistics: dplyr and ggplot2

1 dplyr is an R package for manipulating data frames. The
following functions filter rows, sort rows, select columns,
add columns, group, and aggregate the columns of a
grouped data frame.

flights %>%
filter(month == 1, day < 5) %>%
arrange(day, distance) %>%
select(month, day, distance, air_time) %>%
mutate(speed = distance / air_time * 60) %>%
group_by(day) %>%
summarise(avgspeed = mean(speed,na.rm=TRUE))

2 ggplot2 is an R package for data visualization. Graphics
are built as a sum of layers, which consist of a data frame,
a geom, a stat, and a mapping from the data to the geom’s
aesthetics (like x, y, color, or size). The appearance of the
plot can be customized with scales, coords, and themes.

ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy)) +
geom_point(mapping = aes(x = displ, y = hwy,

color = class, alpha = cty))
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