DATA 1010 Cour	se Standards
Students will be	
JULIA 1	Write Julia code to solve simple algorithmic problems using conditionals, func- tions, arrays, dictionaries, and iteration.
LINALG 2	Use vocabulary and results from linear algebra to solve problems involving linear independence, span, and rank.
MATALG 3	Use matrix algebra (including matrix transposes) to solve problems involving pro- jection and orthogonality
EIGEN 4	Apply knowledge of determinants, eigendecomposition, and singular value de- composition to data problems and other applications
OPT 5	Solve problems using the Lagrange multipliers theorem and/or the relationship between critical points of multivariable functions and Hessian eigenvalues
MATDIFF 6	Differentiate matrix expressions with respect to vectors and use this technique to solve optimization problems.
MACHARITH 7 NUMERROR 8	Reason about 64-bit and 32-bit integer and floating point arithmetic Discuss the categories of numerical error and identify points of concern in appli-
PRNG 9	Discuss basic considerations surrounding the generation of pseudorandom num-
NUMOPT 10	bers, such as seed, period, and statistical tests
PROBSPACE 11	optimization Explain the elements of a probability space and use probability spaces to model
	random experiments
CONDPROB 12	branching tree diagrams and their corresponding probability spaces
BAYES 13	tional probability problems
IND 14	dependent random variables, and use independence to solve probability problems
EXP 15	or linearity of expectation to find the expectation of a random variable
COV 16	Calculate variances and covariances, recognize high or low variance and positive or negative covariance from graphical representations of distributions, and use properties of variance and covariance to solve problems about random variable distributions
CONDEXP 17	Calculate conditional expectations and conditional variances and apply them to expectation problems
COMDISTD 18	Discuss definitions and properties of common discrete distributions (Bernoulli, bi- nomial, geometric, Poisson) and recognize circumstances under which those dis- tributions can be expected to fit observed data well
COMDISTC 19	Discuss definitions and properties of common continuous distributions (exponen- tial, uniform, multivariate normal)
CLT 20	State and apply the central limit theorem, and recognize when the conclusion of the central limit theorem should not be expected to hold
POINTEST 21	Discuss the relationship between bias and consistency, determine whether a given estimator is biased or consistent, and calculate and interpret confidence intervals
BOOT 22	Apply the Glivenko-Cantelli theorem and use the bootstrap method to estimate statistical functionals
HYPTEST 23	Perform a hypothesis test and interpret hypothesis test findings (including multiple hypothesis testing)
MLE 24	Calculate maximum likelihood estimators, and give examples to illustrate the shortcomings of MLE
STATLEARN 25	Explain the main points of statistical learning theory (regression vs classification, loss functional, target function, learner, training and test error, overfitting, inductive bias, bias-variance tradeoff)
LRC 26	Apply classification vocabulary (confusion matrix, detection rate, false alarm rate, precision, receiver operating characteristic) and the Neyman-Pearson lemma to reason about classification problems
KDE 27	Apply kernel density estimators to data problems, and explain ways of dealing with the bias-variance tradeoff in density estimation
LINREG 28	Explain the techniques of basic linear and polynomial regression, and discuss the advantages and disadvantages relative to nonparametric methods
LOGIST 29	Describe, apply, and analyze logistic regression models
QDA 30	Discuss the assumptions of, the estimation methods for, and facts about quadratic and linear discriminant analysis
SVM 31	Describe the mathematics and intuition behind support vector machines (both hard- and soft-margin, and SVM with radial basis function kernel)
DECTREE 32	Train and interpret decision trees for classification and regression.
ENSEMBLE 33	Discuss the mechanisms behind and benefits of common ensemble methods, in- cluding bagging and gradient boosting.
DIMRED 34	Describe and interpret dimension reduction methods, including principal compo- nent analysis and t-SNE
NN 35	Describe, apply, and analyze multi-layer perceptrons for regression and classifica- tion
FREQBAYES 36	Describe the distinction between frequentist and Bayesian approaches to statistics, and explain computational methods to Bayesian analysis
CONJPRIOR 37	Find posterior distributions analytically for Bayesian statistics problems with con- jugate priors.
MCMC 38	Solve exercises about basic Markov chain Monte Carlo theory, and discuss how MCMC relates to graphical models and to Bayesian methods
CAUSAL 39	Apply the counterfactual model to explain the distinction between causation and association, discuss the difference between randomized and observational studies, and control for confounders
MLCOMP 40	Discuss relative advantages and disadvantages of different machine learning mod- els in specific situations.