Probability: Common Distributions
1 Bernoulli $(\operatorname{Ber}(p))$: A weighted coin flip

(2) $\operatorname{Binomial}(\operatorname{Bin}(n, p))$: A sum of n independent $\operatorname{Ber}(p)$'s.

3 Geometric $(\operatorname{Geom}(p))$: Time to first success (1) in a sequence of independent $\operatorname{Ber}(p)$'s.

4 Poisson distribution $(\operatorname{Poiss}(\lambda))$: Limit as $n \rightarrow \infty$ of $\operatorname{Binomial}\left(n, \frac{\lambda}{n}\right)$.

5 Exponential distribution $(\operatorname{Exp}(\lambda))$: Limit as $n \rightarrow \infty$ of distribution of $1 / n$ times a Geometrici($\lambda / n)$.

6 Normal distribution $\left(\mathcal{N}\left(\mu, \sigma^{2}\right)\right.$): Limit as $n \rightarrow \infty$ of the distribution of $\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}}$, for any independent sequence X_{1}, \ldots, X_{n} of identically distributed random variables (i.i.d.) with $\mathbb{E}\left[X_{1}\right]=\mu$ and $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}<\infty$ (see Central Limit random va
Theorem).

7 Multivariate normal distribution $(\mathcal{N}(\mathbf{0}, \Sigma))$: if $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$ is a vector of independent $\mathcal{N}(0,1)^{\prime}$'s, A is an $m \times n$ matrix of constants, and $\mu \in \mathbb{R}^{m}$, then the vector

$$
\boldsymbol{X}=A \boldsymbol{Z}+\mu
$$

is multivariate normal. The covariance matrix of \mathbf{X} is $\Sigma=A A^{\prime}$.

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} \mathrm{e}^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

Programming in Julia

1 A value is a fundamental entity that may be manipulated by a program. Values have types; for example, 5 is an Int and "Hello world!" is a String.
(2) A variable is a name used to refer to a value. We can assign a value 5 to a variable x using $x=5$.
(3) A function performs a particular task. You prompt a function to perform its task by calling it. Values supplied to a function are called arguments. For example, in the function call print (1,2), 1 and 2 are arguments.
(4) An operator is a function that can be called in a special way. For example, * is an operator since we can call the multiplication function with the syntax $3 * 5$
55 A statement is an instruction to be executed (like $\mathrm{x}=-3$). An expression is a
combination of values, variables, operators, and function calls that a language interprets and evaluates to a value.
6 A numerical value can be either an integer or a float. The basic operations are
$+,-, *, l, \wedge$, and expressions are evaluated according to the order of operations.
7 Numbers can be compared using <,>,==, \leq or \geq
8 Textual data is represented using strings. length(s) returns the number of characters in s . The * operator concatenates strings.
(9) A boolean is a value which is either true or false. Booleans can be combined with the operators \&\& (and), । | (or), ! (not).
10 Code blocks can be executed conditionally
if $\mathrm{x}>0$
" x is positive
elseif $x==0$
else
end
11 Functions may be defined using the familiar math notation: $f(x, y)=3 x+2 y$ or using a function block (shift is a keyword argument):

$$
\begin{aligned}
& \text { function } f(x, y ; \text { shift }=0 \\
& \quad 3 x+2 y+\text { shift } \\
& \text { end }
\end{aligned}
$$

The scope of a variable is the region in the program where it is accessible. Variables defined in the body of a function are not accessible outside the body of the function.
13 Array is a compound data type for storing lists of objects. Entries of an array may be accessed with square bracket syntax using an index or using a range object $\mathrm{a}: \mathrm{b}: \mathrm{A}=[-5,3,2,1] ; \mathrm{A}[2] ; \mathrm{A}[3$:end].
14 An array comprehension can be used to generate new arrays: $[\mathbf{k} \wedge 2$ for $\mathbf{k}=1: 10$ if $\bmod (\mathbf{k}, 2)==0]$
15 A dictionary encodes a discrete function by storing input-output pairs and looking up input values when indexed. This expression returns $[0,0,1,0]$:

Dict("blue"=>[0,0,1.0],"red"=>[1.0,0,0])["blue"]
16 A while loop takes a conditional expression and a body and evaluates them alternatingly until the conditional expression returns false. A for loop evaluates its nary). Each value in the iterator is assigned to a loop variable which can be referenced in the body of the loop.
while $x>0$
end ${ }^{\mathbf{x}}$
for $\mathrm{i}=1: 10$
end ${ }^{\text {print(}} \mathbf{i}$)

Jearning standards

$\square 1$ JULIA
 \square 2 LINALG
 $\square 3$ matalg
 $\square 4$ EIGEN
 $\square 5$ OPT
 $\square 6$ MATDIFF
 $\square \square$ MACHARITH
 $\square 8$ NUMERROR

$\square 0$ PRNG
$\square 10$ NUMOPT
$\square 11$ PROBSPACE
$\square 12$ CONDPROB
$\square 13$ BAYES
$\square 14$ IND
$\square 15$ EXP
$\square 16 \mathrm{cov}$
$\square 17$ CONDEXP
$\square 18$ COMDISTD
$\square 19$ COMDISTC
$\square 20 \mathrm{CLT}$
\square al POINTEST
\square 22 воОт
\square 23 HYPTEST
$\square 24$ MLE

