Brown University
 DATA 1010
 Practice Midterm I
 Instructor: Samuel S. Watson

Name:
号

You will have three hours to complete this exam. The exam consists of 12 written questions. No calculators or other materials are allowed, except the Julia-Python-R reference sheet.
You are responsible for explaining your answer to every question. Your explanations do not have to be any longer than necessary to convince the reader that your answer is correct.

I verify that I have read the instructions and will abide by the rules of the exam: \qquad

Write a Julia function called appeartwice which accepts two arguments: a vector \mathbf{x} and a number (a). The function should return true if \mathbf{x} has two or more entries which are equal to and false otherwise.

```
@assert appeartwice([1,4,1,0,2,1],1) == true
@assert appeartwice([-3,2,-5,7,1],-5) == false
@assert appeartwice([-3,2,-5,7,1],11) == false
```

Make your code as close to correct as you can, but minor syntax errors will be disregarded in the grading.

Solution

Let us say that a vector in a list of vectors is redundant if it can be deleted from the list without changing the span of the list. Show that if a list of nonzero vectors is linearly dependent, then the number of redundant vectors is at least two.

Solution

(a) Suppose that A is an $m \times n$ matrix. Explain why a vector \mathbf{x} is orthogonal to the span of the columns of A if it is in the null space of the transpose of A.
(b) Suppose that A is a 10×5 matrix and that \mathbf{b} is a vector which is in the span of the columns of A. Explain why the equation $A \mathbf{x}=\mathbf{b}$ cannot be solved by left-multiplying by A^{-1} to obtain $\mathbf{x}=A^{-1} \mathbf{b}$.
(c) Suppose A is an $n \times n$ matrix and that \mathbf{b} is a vector in \mathbb{R}^{n}. Solve the matrix equation $A \mathbf{x}+\mathbf{b}=\mathbf{x}$ for \mathbf{x} (you may assume matrix invertibility wherever convenient).

Solution

Problem 4

Recall that eigenvectors corresponding to different eigenvalues are linearly independent (in other words, if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are eigenvectors with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and if no pair of the λ_{i} 's are equal, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent list). Using this fact, explain why an $n \times n$ matrix has at most finitely many eigenvalues.

Solution

Suppose $\mathbf{b} \in \mathbb{R}^{n}$. For each $\lambda \in \mathbb{R}$, consider the problem of finding the value of $\mathbf{x} \in \mathbb{R}^{n}$ which minimizes the expression

$$
|\mathbf{x}-\mathbf{b}|+\lambda|\mathbf{x}|^{2}
$$

Discuss, qualitatively, the behavior of the solution of this optimization problem as λ ranges over the interval $(0, \infty)$. (Note: do not try to differentiate; approach this one qualitatively from start to finish.)

Solution

Problem 6

Suppose that A is an $n \times n$ matrix and that $\lambda \in \mathbb{R}$. Differentiate $A \mathbf{x}+\lambda \mathbf{x}$ with respect to \mathbf{x}. Show that the resulting matrix has nonzero determinant for almost all real values of λ (decide on a meaning for "almost all" and state it in your answer).

Solution

Which of the following operations results in a number which is exactly equal to 11.0 when evaluated in Float64 arithmetic?

1. $11.0+0.5^{\wedge} 30$
2. $11.0+0.5^{\wedge} 51$
3. $\operatorname{sum}([0.125$ for $i=1: 88])$
4. $100.0+0.5 \wedge 48-100.0+11.0$

Solution

Problem 8

Your friend observes that they were able to calculate $A \mathbf{x}$ with error significantly less than $\kappa(A) \epsilon_{\text {mach }}$ (where A is an $m \times n$ matrix and \mathbf{x} is a vector in \mathbb{R}^{n}). Without knowing further details regarding the A and \mathbf{x} values your friend is using, give two reasons why this might have been the case.

Solution

Suppose $X_{0} \in[0,1]$, and for $n \geq 1$ we define $X_{n}=\bmod \left(\pi+X_{n-1}, 1\right)$, where $\bmod (x, 1)$ is the difference between x and the greatest integer which is less than or equal to $x(\operatorname{sogod}(5.62,1)=0.62$, for example).
(a) Does this sequence have a finite period, and if so, what is the period?
(b) If the values of the sequence are computed iteratively in Float64 arithmetic rather than real arithmetic, give an upper bound on the period of the resulting sequence.
(c) If we think of the (Float64) values $X_{0}, X_{1}, X_{2}, \ldots$ as the output of a pseudorandom number generator, is this PRNG cryptographically secure?

Solution

Several (plain vanilla) gradient descent trajectories are shown for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, starting from various points in the square $[-3,6] \times[-3,6]$. Describe the graph of f. (For example, how many local minima does it have, and where is the graph steepest?)

Solution

Let (Ω, \mathbb{P}) be a probability space. Use the axioms of probability to show that $\mathbb{P}(A \cap B) \leq \mathbb{P}(B)$ for any events A and B.

Solution

Three cards are drawn without replacement from a well-shuffled standard deck. Find the conditional probability that the cards are all diamonds given that they are all red cards. (Note: 13 of the cards are diamonds, 26 of the cards are red, and all of the diamonds are red).

Solution

