BROWN UNIVERSITY DATA 1010 Practice Midterm I Instructor: Samuel S. Watson Name:

You will have three hours to complete this exam. The exam consists of 12 written questions. No calculators or other materials are allowed, except the Julia-Python-R reference sheet.

You are responsible for explaining your answer to **every** question. Your explanations do not have to be any longer than necessary to convince the reader that your answer is correct.

I verify that I have read the instructions and will abide by the rules of the exam:

Problem 1

[LINALG]

Write a Julia function called **appeartwice** which accepts two arguments: a vector **x** and a number **a**. The function should return **true** if **x** has two or more entries which are equal to **a** and **false** otherwise.

@assert appeartwice([1,4,1,0,2,1],1) == true @assert appeartwice([-3,2,-5,7,1],-5) == false @assert appeartwice([-3,2,-5,7,1],11) == false

Make your code as close to correct as you can, but minor syntax errors will be disregarded in the grading.

Solution

Problem 2

Let us say that a vector in a list of vectors is *redundant* if it can be deleted from the list without changing the span of the list. Show that if a list of nonzero vectors is linearly dependent, then the number of redundant vectors is at least two.

(a) Suppose that *A* is an $m \times n$ matrix. Explain why a vector **x** is orthogonal to the span of the columns of *A* if it is in the null space of the transpose of *A*.

(b) Suppose that *A* is a 10 × 5 matrix and that **b** is a vector which is in the span of the columns of *A*. Explain why the equation A**x** = **b** cannot be solved by left-multiplying by A^{-1} to obtain **x** = A^{-1} **b**.

(c) Suppose *A* is an $n \times n$ matrix and that **b** is a vector in \mathbb{R}^n . Solve the matrix equation $A\mathbf{x} + \mathbf{b} = \mathbf{x}$ for **x** (you may assume matrix invertibility wherever convenient).

Solution

Problem 4

[EIGEN]

Recall that eigenvectors corresponding to different eigenvalues are linearly independent (in other words, if $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are eigenvectors with eigenvalues $\lambda_1, \ldots, \lambda_n$, and if no pair of the λ_i 's are equal, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a linearly independent list). Using this fact, explain why an $n \times n$ matrix has at most finitely many eigenvalues.

[MATDIFF]

Suppose $\mathbf{b} \in \mathbb{R}^n$. For each $\lambda \in \mathbb{R}$, consider the problem of finding the value of $\mathbf{x} \in \mathbb{R}^n$ which minimizes the expression

 $|\mathbf{x} - \mathbf{b}| + \lambda |\mathbf{x}|^2$

Discuss, qualitatively, the behavior of the solution of this optimization problem as λ ranges over the interval $(0, \infty)$. (Note: do not try to differentiate; approach this one qualitatively from start to finish.)

Solution

Problem 6

Suppose that *A* is an $n \times n$ matrix and that $\lambda \in \mathbb{R}$. Differentiate $A\mathbf{x} + \lambda \mathbf{x}$ with respect to \mathbf{x} . Show that the resulting matrix has nonzero determinant for almost all real values of λ (decide on a meaning for "almost all" and state it in your answer).

Solution

Final answer:

Problem 7

Which of the following operations results in a number which is exactly equal to **11.0** when evaluated in **Float64** arithmetic?

- 1. $11.0 + 0.5^{30}$
- 2. 11.0 + 0.5^51
- 3. sum([0.125 for i=1:88])
- $4. 100.0 + 0.5^{48} 100.0 + 11.0$

Solution

Problem 8

[NUMERROR]

Your friend observes that they were able to calculate $A\mathbf{x}$ with error significantly less than $\kappa(A)\epsilon_{mach}$ (where A is an $m \times n$ matrix and \mathbf{x} is a vector in \mathbb{R}^n). Without knowing further details regarding the A and \mathbf{x} values your friend is using, give two reasons why this might have been the case.

Problem 9

Suppose $X_0 \in [0, 1]$, and for $n \ge 1$ we define $X_n = \text{mod}(\pi + X_{n-1}, 1)$, where mod(x, 1) is the difference between x and the greatest integer which is less than or equal to x (so mod(5.62, 1) = 0.62, for example).

(a) Does this sequence have a finite period, and if so, what is the period?

(b) If the values of the sequence are computed iteratively in **Float64** arithmetic rather than real arithmetic, give an upper bound on the period of the resulting sequence.

(c) If we think of the (Float64) values $X_0, X_1, X_2, ...$ as the output of a pseudorandom number generator, is this PRNG cryptographically secure?

Solution

Problem 10

Several (plain vanilla) gradient descent trajectories are shown for a function $f : \mathbb{R}^2 \to \mathbb{R}$, starting from various points in the square $[-3,6] \times [-3,6]$. Describe the graph of f. (For example, how many local minima does it have, and where is the graph steepest?)

[NUMOPT]

[CONDPROB]

Let (Ω, \mathbb{P}) be a probability space. Use the axioms of probability to show that $\mathbb{P}(A \cap B) \leq \mathbb{P}(B)$ for any events *A* and *B*.

Solution

Problem 12

Three cards are drawn without replacement from a well-shuffled standard deck. Find the conditional probability that the cards are all diamonds given that they are all red cards. (Note: 13 of the cards are diamonds, 26 of the cards are red, and all of the diamonds are red).

Solution

Final answer: